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We consider a system which consists of a layer of an incompressible binary liquid with a deformable free
surface, and a thick solid substrate subjected to a differential heating across it. We investigate the long-wave
thermosolutal Marangoni instability in the case of asymptotically small Lewis and Galileo numbers for finite
capillary and Biot numbers with the Soret effect taken into account. We find both long-wave monotonic and
oscillatory modes of instability in various parameter domains of Biot and Soret numbers. In the domain of
finite wave numbers the monotonic instability is found, but the minimum of the monotonic neutral curve is
shown to be located in the long-wave region. A set of nonlinear evolution equations is derived for the
description of the spatiotemporal dynamics of the oscillatory instability. The weakly nonlinear analysis is
carried out for the monotonic instability.
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I. INTRODUCTION

Various transport processes encountered in technology
and nature are due to or affected by simultaneous action of
temperature and solute concentration gradients. Different
configurations of these gradients were discussed �1� in the
context of buoyancy-driven convection. Similar settings can
be also considered in regards with the surface-tension-driven
or Marangoni convection in the no-gravity environment. Rel-
evant examples are different techniques of materials process-
ing, e.g., crystal growth, from binary or multicomponent liq-
uid mixtures. Many of them, especially those employing the
floating zone and temperature-gradient methods, involve
large temperature and possibly concentration gradients im-
posed in various directions relatively to the melt �1�.

The concentration gradient across the layer can be either
imposed independently of the temperature gradient or gener-
ated by the Soret effect. The case where the solute concen-
tration is produced by the Soret effect and deformations were
neglected, was considered in Refs. �2–9�. Unlike in the case
of a pure liquid, an oscillatory Marangoni instability is pos-
sible in binary liquids due to the presence of two instability
mechanisms related to both temperature and solute concen-
tration gradients �2,4,5�.

Surface deformation can lead to the emergence of a new
long-wave stationary instability mode. In both cases of inde-
pendent temperature and concentration gradients �11� and
that of the concentration gradient induced by the Soret effect
�12�, it was found that for sufficiently small values of the
Galileo number �under reduced gravity for thin layers�, the
neutral stability curve has an additional minimum at zero
value of the wave number k=0, with the critical Marangoni
number proportional to the Galileo number.

Bhattacharjee �12� considered the Marangoni instability in
binary-liquid mixtures when the temperature of the substrate
is specified. He found that in the long-wave limit and for a
small Biot number at the free surface the monotonic instabil-
ity emerges. Also, the oscillatory instability in the limit of a
small Lewis number was found emerging only in the finite-
wavelength domain when the separation ratio �the Soret
number� is confined to a certain domain. We note that in

spite of the fact that Bhattacharjee �12� derived general ex-
pressions for both monotonic and oscillatory instability
thresholds in the case of a finite Biot number, the analysis of
this general case was not carried out.

Joo �13� investigated the stability of a binary-liquid layer
heated at the deformable gas-liquid interface side in the pres-
ence of the Soret effect when the temperature of the substrate
is fixed. In this case the instability is driven by solutocapil-
larity and retarded by thermocapillarity. As in Ref. �12�, the
general characteristic relation between the thermal and so-
lutal Marangoni numbers was obtained assuming that all pa-
rameters of the problem, such as the wave number of the
perturbation and the Biot and capillary numbers, are of the
unity order. However, the detailed analysis was presented
only in the limit of a small Biot number.

Podolny et al. �14� developed the theory of the long-wave
Marangoni instability in a binary-liquid layer with a deform-
able interface in the limit of a small Biot number B and
specified heat flux at the liquid-solid interface in the presence
of the Soret effect. The condition of a specified heat flux
at the solid-liquid interface corresponds to the limit of a low
thermal conductivity of the solid substrate. It was shown �14�
that the problem was characterized by two distinct
asymptotic limits for the disturbance wave number k, which
are k�B1/4 and k�B1/2, caused by the presence of two in-
stability mechanisms, namely, thermocapillary and soluto-
capillary effects. The asymptotic limit of k�B1/2 found there
was novel and was unknown for pure liquids. A diversity of
instability modes was revealed �14�. Specifically, a new long-
wave oscillatory mode was found for sufficiently small val-
ues of the Galileo number.

Furthermore, the investigation was extended to the case of
a finite Biot number at the upper free deformable surface
�15� and zero Biot number at the bottom rigid plane. As the
mass flux at the boundaries of the layer vanishes, the effec-
tive Sherwood number which represents a mass-transfer ana-
log of the Biot number is zero. Therefore, this was a basis for
a conjecture that in spite of a finite value of the Biot number,
the long-wave instability would emerge. Our conjecture was
found correct and various types of both long-wave mono-
tonic and oscillatory modes of instability in various param-
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eter domains were discovered. Also, a set of nonlinear long-
wave equations for the oscillatory instability was derived in
the limit of both small Lewis and Galileo numbers. An os-
cillatory instability was found for small wave numbers k
=O��L��1. In the case of small gravity, three-dimensional
stable supercritical wavy patterns were found.

In the present paper, we consider the most general case of
a system that consists of a layer of an incompressible binary
liquid with a deformable free surface, and a thick solid sub-
strate of an arbitrary thermal conductivity heated or cooled
from below. As we will show, the problem is now determined
by two independent Biot numbers, the Biot number B char-
acterizing the heat transfer on the free surface, and effective
Biot number b on the liquid-solid interface. Both Biot num-
bers are generally finite. We will see that the influence of the
finite bottom Biot number on the linear stability is crucial.
Also, in contradistinction with the previous papers on this
subject, we target the nonlinear dynamics of both oscillatory
and monotonic instability modes.

The structure of the paper is as follows. In Sec. II we
solve the heat transfer problem in the solid substrate and
formulate the closed problem for the liquid layer in terms of
the effective Biot number at the bottom, which depends on
the wave number and growth rate of the disturbance. In Sec.
III we investigate the long-wave Marangoni instability in the
case of asymptotically small Lewis and Galileo numbers for
all finite capillary and Biot numbers at the gas-liquid and
liquid-solid interfaces. In the framework of long-wave linear
stability theory, we find both monotonic and oscillatory
modes of instability in various parameter domains of Biot
and Soret numbers.

The linear theory for monotonic instability has been also
developed for finite wave numbers. Our analysis shows that
in the case of small Galileo and Lewis numbers, there are no
additional minima of the neutral curve in the region k
=O�1�. We show that the minimum of the monotonic neutral
curve is located either at k=0 or in the long-wave domain
k=O�L1/4�. The results of intermediate asymptotics for the
monotonic instability threshold in the domain k=O�L1/4� per-
fectly match both the long-wave limit, k=O��L�, and the
limit of finite wave numbers k=O�1�. Section IV is devoted
to the nonlinear analysis of the problem for long waves with
k=O�L1/2�. Nonlinear evolution equations describing the dy-
namics of the long-wave monotonic instability in the domain
�L�k�1 are derived in Sec. V. It is shown that the analysis
of the monotonic instability in the region above the threshold
requires a new scaling of the wave number which is different
from that in the case of the oscillatory instability. A weakly
nonlinear analysis for the case of the monotonic instability
leads in Sec. V to the derivation of the evolution equation
similar to that derived in Ref. �18� for the Bénard-Marangoni
instability in pure liquids.

II. STATEMENT OF THE PROBLEM
AND GOVERNING EQUATIONS

A. Mathematical model

We consider a layer of an incompressible binary liquid of
horizontally infinite extent at rest on a solid substrate of a

finite thickness hs heated or cooled from below in the gravity
field. The liquid layer is exposed to the ambient gas phase at
its deformable free surface �Fig. 1�. Surface tension � is
assumed to depend upon both temperature � and solute con-
centration c, �=��� ,c�, and, therefore, Marangoni �both
thermocapillary and solutocapillary� effects are taken into
account. It is assumed that the layer is sufficiently thin, so
that the effect of buoyancy can be neglected as compared to
the Marangoni effect.

As a generalization of the standard model of heat and
mass transfer given by the Fourier’s and Fick’s laws, where
the heat and mass fluxes are taken proportional to the tem-
perature and concentration gradients, respectively, one may
consider both fluxes to be each linear combinations of both
of these gradients �10�. This extended model incorporates the
Soret and Dufour effects. However, the Dufour effect is ex-
ceedingly weak in liquids and can be safely neglected, while
the Soret effect can be significant and will be taken into

account hereafter. Therefore, in what follows, the heat J�h and

mass J�m fluxes are given by

J�h = − ����, J�m = − �D��� c + ����� , �1�

respectively, where � and c are the fluid temperature and
solute concentration, respectively, �, �, D, � represent den-
sity, thermal conductivity, mass diffusivity, and the Soret co-
efficient of the binary mixture, respectively. Note that one
more parameter, namely, the Soret diffusion parameter ST,
associated with the Soret effect is also known in the literature
�19�. It is related to the Soret coefficient � via the relation-
ship �=ST /cwt, where cwt is a weight concentration of the
mixture.

A set of governing equations consists of the two-
dimensional set of hydrodynamic equations for an incom-
pressible liquid, as well as heat and mass transfer equations
in the presence of the Soret effect,

�� · v = 0, �2a�

vt + �v · �� �v = − �−1�� p + ��� 2v − gez, �2b�

�t + v · ��� = ��� 2� , �2c�

z=−hs

=−a zT

g

D, kth

k th
s κ s

free surface

0
z=h

z

x
0

ρ, µ, ν, κ,
α, binary liquid

z=h(x,y,t)

solid layer

ambient gas

FIG. 1. Sketch of the system.
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ct + v · �� c = D�� 2c + �D�� 2� . �2d�

Here v, p are fields of the fluid velocity, and pressure, re-
spectively, �, � are, respectively, kinematic viscosity, and

thermal diffusivity of the binary mixture, �� ���x ,�z�, and t is
time.

In the solid substrate, the heat equation is

�t
s = �s�� 2�s, �3�

where �s and �s are the temperature and thermal diffusivity
in the solid, respectively.

The boundary conditions at the liquid-solid interface z
=0 include the no-slip, no-penetration condition for the fluid
velocity, continuity of the normal components of the heat
flux and the temperature at the solid-liquid interface, and
mass impermeability, respectively,

z = 0:v = 0, ��z = �s�z
s, � = �s, cz = − ��z, �4�

where �s is thermal conductivity of the solid.
The boundary condition at the solid-gas interface z=−hs

reflects the fact that a constant temperature is imposed at the
bottom of the solid substrate

�s = �−. �5�

At the free liquid-gas interface z=h�x ,y , t�, the boundary
conditions are, respectively, the kinematic boundary condi-
tion, that of heat transfer governed by the Newton’s law of
cooling and mass impermeability, respectively,

�h

�t
+

�h

�x
u +

�h

�y
v = w , �6a�

���� · n + q�� − �+� = 0, �6b�

��� c · n − � · q�� − �+� = 0, �6c�

where v= �u ,v ,w�, q is the heat transfer coefficient describ-
ing the rate of heat transfer from the liquid to the ambient
gas phase at the constant temperature �+, and n is the unit
outward vector normal to the interface.

Furthermore, at the liquid-gas free surface z=h�x ,y , t�, the
balance of both normal and tangential interfacial stresses is
given, respectively, as

− p +
2	

1 + hx
2 + hy

2 �ux�hx
2 − 1� + vy�hy

2 − 1� − hx�uz + wx� + �uy + vx�hxhy − �wy + vz�hy� = �
hxx�1 + hy

2� + hyy�1 + hx
2� − 2hxhyhxy

�1 + hx
2 + hy

2�3/2 ,

�6d�

	
�2�wz − ux�hx − �uy + vx�hy − hyhx�vz + wy� + �uz + wx��1 − hx

2��
�1 + hx

2 + hy
2

= �x, �6e�

	
�2�wz − vy�hy − �uy + vx�hx − hyhx�uz + wx� + �vz + wy��1 − hy

2��
�1 + hx

2 + hy
2

= �y , �6f�

where v= �u ,v ,w�, 	=�� is the fluid viscosity, and �x, �y

are the full derivatives of the surface tension �=��x ,y ,z
=h�x ,y�� with respect to x and y, respectively. To account for
the Marangoni effect we also assume linear variation of sur-
face tension � with both temperature and solute concentra-
tion

���,c� = �0 − �t�� − �0� + �c�c − c0� , �7�

where �t=−�� /��, �c=�� /�c, while �0, �0 and c0 are, re-
spectively, the reference values of surface tension, tempera-
ture, and concentration.

B. Base state

The base state for the temperature in the solid layer −hs

z
0 satisfies the problem

�� 2�s = 0, �8a�

z = − hs:�
s = �−, �8b�

z = 0:��z = �s�z
s,� = �s. �8c�

The solution of Eqs. �8� is

�s�z� = �− −
�a

�s �z + hs� , �9�

where a��−�z�z=0.
To find the base solution for the temperature field in the

static liquid layer 0
z
h0, we solve

�� 2� = 0, �10a�

z = 0:� = �s = �− −
�ahs

�s , �10b�

LONG-WAVE MARANGONI INSTABILITY IN A BINARY … PHYSICAL REVIEW E 76, 026309 �2007�

026309-3



z = h0:��z + q�� − �+� = 0, �10c�

and obtain

��z� = �− −
�ahs

�s − az , �11�

where the parameter a can be expressed using physical pa-
rameters of the problem as

a =
q��− − �+�

� + q	 �
�shs + h0
 . �12�

C. Nondimensional form of equations
and boundary conditions

We define the dimensionless variables of the problem us-
ing the scaling

t →
h0

2

�
t, �x,y,z� → h0�x,y,z�, �u,v,w� →

�

h0
�u,v,w� ,

�13a�

�→ �+ + ah0T, c →
�t

�c
ah0C, p →

	�

h0
2 p . �13b�

This yields dimensionless form of the governing equa-
tions in the liquid phase

�� · v = 0, �14a�

vt + P−1�v · �� �v = − �� p + �� 2v − Gez, �14b�

PTt + v · �� T = �� 2T , �14c�

SCt + L−1v · �� C = �� 2C + ��� 2T , �14d�

the heat equation in the solid phase

PTt
s = �̃�� 2Ts, �15�

while the boundary conditions are recast in the form

z = − h̃:Ts =� , �16a�

z = 0:v = 0, Tz = �̃Tz
s, T = Ts, Cz = − �Tz, �16b�

z = h�x,y,t�:�� T · n + BT = �� C · n − �BT = 0,

Pht + uhx + vhy = w , �16c�

1

�1 + hx
2 + hy

2�1/2 �2�wz − ux�hx − �uy + vx�hy − hyhx�vz + wy�

+ �uz + wx��1 − hx
2�� = M�Cx − Tx + hx�Cz − Tz�� , �16d�

1

�1 + hx
2 + hy

2�1/2 �2�wz − vy�hy − �uy + vx�hx − hyhx�uz + wx�

+ �vz + wy��1 − hy
2�� = M�Cy − Ty + hy�Cz − Tz�� , �16e�

− p +
2

1 + hx
2 + hy

2 �ux�hx
2 − 1� + vy�hy

2 − 1� − hx�uz + wx�

+ �uy + vx�hxhy − �wy + vz�hy�

= 
hxx�1 + hy

2� + hyy�1 + hx
2� − 2hxhyhxy

�1 + hx
2 + hy

2�3/2 , �16f�

where the dimensionless parameters of the problem

P =
�

�
, S =

�

D
, � =

��c

�t
, B =

qh0

�
, M =

�tah0
2

	�
,

G =
gh0

3

��
, �17�

are the Prandtl, Schmidt, Soret, Biot, Marangoni, and modi-
fied Galileo numbers, respectively, and =

�h0

	� is the inverse
capillary �or surface tension� number. It is found to be con-
venient to use hereafter also the Lewis number L= P /S. We

also introduce new parameters �̃=�s /�, �̃=�s /�, that denote
relative thermal conductivity and diffusivity of the solid and

liquid phases, respectively, �= ��−−�+� / �ah0� and h̃
=hs /h0. It is also useful to note that the solutal Marangoni
number can be expressed as Mc=ML−1�. A summary of the
dimensionless parameters of the problem independent of
control factors is presented in Table I.

D. Linearized problem

The base state whose stability will be studied here is
given by

v̄ = 0, T̄ = − z +
1 + B

B
, T̄s = −

z

�̃
	1 +

1 + B

B

,

C̄ = �z + const, p̄ = − G�z − 1� . �18�

TABLE I. Dimensionless parameters of the problem and their
typical experimental values for aqueous binary mixtures. Param-
eters depending on the control values, such as the mean layer thick-
ness h0 and the applied thermal gradient a are excluded. The pa-
rameters P, S, B, and � are defined in Eq. �17�, L is defined in the
paragraph following Eq. �17�, and b0 is defined in Eq. �25�.

Dimensionless parameter Typical values

P 3–10

S 102–103

L 10−3–3�10−2

B 10−4–10−2

b0 10−5–103

� −1–1
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Because of the rotation invariance of the problem, it is
sufficient to investigate the stability of the base state with
respect to two-dimensional disturbances. Introducing normal

perturbations �u ,w , p ,T ,Ts ,C ,��= �ũ , w̃ , p̃ , T̃ , T̃s , C̃ , �̃�eikx+�t,
where k and � are, respectively, the dimensionless wave
number and growth rate of the disturbance, yields in terms of
the amplitudes of perturbation functions

ikũ + w̃z = 0, �19a�

�ũ = − ikp̃ − k2ũ + ũzz, �19b�

�w̃ = − p̃z − k2w̃ + w̃zz, �19c�

�PT̃ − w̃ = − k2T̃ + T̃zz, �19d�

�PL−1C̃ + L−1�w̃ = − k2C̃ + C̃zz + ��− k2T̃ + T̃zz� ,

�19e�

where �=��x , t� is the deviation of the interface from its flat
state z=1.

In the solid phase the heat equation yields

P�T̃s = �̃�− k2T̃s + Ts˜
zz� . �19f�

The boundary conditions now become, at z=−h̃,

T̃s = 0 �19g�

at z=0

ũ = w̃ = 0, T̃ = T̃s, T̃z = �̃T̃z
s, C̃z = − �T̃z, �19h�

at z=1

T̃z + B�T̃ − �̃� = 0, �19i�

C̃z − �B�T̃ − �̃� = 0, �19j�

�P�̃ = w̃ , �19k�

G�̃ − p̃ − 2ikũ = − k2�̃ , �19l�

ũz + ikw̃ = ikM�C̃ − T̃ + �̃�� + 1�� . �19m�

Solving Eq. �19f� with boundary conditions �19g� and
�19h�, yields the relation between the perturbation of the
temperature and its vertical derivative at the solid-liquid in-
terface z=0

T̃z�0� = b�k2,��T̃�0� , �20�

where

b�k2,�� = �̃�P�

�̃
+ k2 coth��P�

�̃
+ k2h̃� �21�

represents the Biot number at the solid-liquid interface. The
expression �20� will be used below as the boundary condition

for the perturbation of the liquid temperature at the rigid
bottom plane z=0. The long-wave case and the case of finite
wave numbers will be now studied separately.

III. LINEAR STABILITY THEORY

In contrast with our previous papers �14,15�, here we deal
with the case of finite Biot numbers at both solid-liquid and
liquid-gas interfaces. The case of a system with both poorly
conducting boundaries was considered in Ref. �14�, while in
Ref. �15� the heat transfer was characterized by the Biot
number of a unity order at the upper free deformable liquid-
gas surface and a specified heat flux at the rigid bottom sur-
face corresponding to a zero effective Biot number in terms
of disturbances at the solid-liquid interface. From the experi-
mental point of view, it is practically impossible to set up a
system with poorly conducting boundaries with prescribed
heat fluxes there, therefore our present analysis with finite
Biot numbers relaxes that assumption and seems to be less
restrictive from the physical point of view.

In real physical problems the Lewis number L is small,
i.e., L�O�10−4−10−2�, e.g., in 3He-4He mixtures L=0.04
�16�, in water-ethanol mixtures L=0.02 at room temperature
�16�, and in magnetic colloidal mixtures �17�, L=1.2�10−4.
Thus, it becomes quite natural to consider the long-wave
Marangoni instability in the case of a small Lewis number.
The choice of our scaling here is based on the results of
analysis that was carried out in our previous paper �15�.
There, we showed that the long-wave oscillatory instability
emerges if the condition G
45L is satisfied. Hence, we ex-
pect that in the limit of a small Lewis number and a unity-
order Galileo number, the oscillatory instability never sets in.
It was also shown �15� that the most important case when
both long-wave monotonic and oscillatory instability
emerge, is the limit of both small L and G.

As will be shown below, the scaling of a characteristic
wave number of the disturbance is determined by the order
of magnitude of a small Lewis number and three distin-
guished asymptotic limits emerge: �i� a long-wave limit k
=O�L1/2� whose scaling is explained in Ref. �15�; �ii� the
case of finite wave numbers k=O�1�; �iii� an intermediate
asymptotics of the long-wave monotonic instability k
=O�L1/4�.

A. The case k=O„�…

It is convenient to introduce a small scaling parameter �
in such a way that L=�2l, G=�2g, l=O�1�, g=O�1�. In the
region k=O�L1/2� we have k=�K, K=O�1�. As it was shown
in Ref. �15�, the Marangoni number and the growth rate of
the disturbance are expanded as

M = �2�M0 + �2M2 + ¯ �, � = �4��0 + �2�2 + ¯ � ,

�22�

where M0 is the critical value of the Marangoni number and
� is a small scaling parameter serving as a measure of small-
ness of the disturbance wave number. The amplitudes of the
perturbation functions are expanded in the form
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��̃,T̃,C̃, p̃� = ��0,T0,C0,p0� + �2��2,T2,C2,p2� + ¯ ,

ũ = ��u0 + �2u2 + ¯ �, w̃ = �2�w0 + �2w2 + ¯ � .

�23�

The lower Biot number b found in Eq. �21� is also ex-
panded in the form

b�K2� = b0 + �2b2�K2� + O��4� , �24�

where

b0 =
�̃

h̃
, b2 =

�̃h̃K2

3
. �25�

All these are substituted into Eqs. �19�. At zero order the
solution is given by

T0 =
B�1 + b0z��0

b0 + B + b0B
, C0 = a0 −

b0Bz��0

b0 + B + b0B
, �26a�

p0 = 0, u0 = 0, w0 = 0, �26b�

where a0 is constant yet to be determined.
At second order the problem reads

iKu2 + w2,z = 0, �27a�

− iKp2 − K2u0 + u2,zz = 0, �27b�

− p2,z + w0,zz = 0, �27c�

− w0 = − K2T0 + T2,zz, �27d�

− K2C0 + C2,zz − �K2T0 + �T2,zz = l−1�w2 + Pl−1�0C0,

�27e�

z = 0:u2 = w2 = 0, T2,z = b0T2 + b2T0,

C2,z = − ��b0T2 + b2T0� , �27f�

z = 1:T2,z + B�T2 − �2� = 0, �27g�

C2,z − �B�T2 − �2� = 0, �27h�

P�0�0 = w2, �27i�

g�0 − p2 − 2iKu0 = − K2�0 , �27j�

u2,z + iKw0 = iKM0C0 − T0 + �0�1 + ��� . �27k�

Solving Eqs. �27� for the unknown constant a0, we find that

a0 = −
�03�b0 + �b0 + B���M0/�b0 + B + b0B� − 2�g + K2 + 3P�0��

3M0
, �28�

where �0=K−2�0.
Integrating Eqs. �27d� and �27e� across the layer and tak-

ing into account the boundary conditions �27f�–�27h� for the
temperature and solute concentration perturbations, we ob-
tain the dispersion relation at second order in the form

16�l + P�0��g + K2 + 3P�0� −
1

3�B + b0�1 + B��

�†M0„B�g + K2 + 48P�0�� + �1 + B�K2�

+ 12P�0�6 + �4 + B��� + ��1 + B�g� + 72l�1 + ����b0…‡

= 0. �29�

Solving Eq. �29� yields two modes of the growth rate

�± = −
1

24P�B + b0�1 + B��
„4B�g + 3l + K2 − M0��

− − 4�1 + B��g + 3l + K2�

+ M0�6 + �4 + B����b0 ± �R… , �30�

where

R = 16�g − 3l + K2�2�B + �1 + B�b0�2 + M0
24B� + �6 + �4

+ B���b0�2 − 4M0�B + �1 + B�b0�„B�7g + 24l + 7K2��

+ 6l�− 6 + �− 8 + B��� + g�12 + �7 + B���

+ K2�12 + �7 + B����b0… . �31�

In the limit of a large wave number, K2�1, the asymptotic
behavior of these two modes of Eq. �30� is

�− = O�K2� = −
K2

3P
, �32a�

�+ = O�1� =
1

48
�− 48l + M0�� . �32b�

Thus, the first mode, Eq. �32a� is always stable in the short-
wave domain, while the second one, Eq. �32b� is stable under
condition M0�
48l.

1. Monotonic instability

Assuming �0=0 in Eq. �29�, we obtain at leading order
the monotonic instability threshold
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M0 =
48�b0 + B + b0B�l�g + K2�

B�g + K2�� + b0��1 + B��g + K2�� + 72l�1 + ���
.

�33�

From Eq. �33� for the threshold of monotonic instability, one
can make the following conclusions. If ��1+���0, the
minimum of the monotonic neutral curve is located in the
long-wave region and

M0 = M0�K = 0� =
48�b0 + B + b0B�gl

Bg� + b0��1 + B�g� + 72l�1 + ���
.

�34�

If ��1+��
0, two different cases are possible:

�i� If g
−
72b0�1+��l

B+b0�1+B�� , the monotonic neutral curve is dis-

continuous at

K2 = K*
2 = −

Bg� + b0��1 + B�g� + 72l�1 + ���
�b0 + B + b0B��

. �35�

In this case in the domain K
K*, the minimum of the mono-
tonic neutral curve is attained at K=0, i.e., the instability is

long wave. There might be an additional minimum of the
monotonic neutral curve in the domain K�K* located out-
side the region k=O���. The present theory is unable to in-
vestigate instability in the domain of finite wave numbers.
This issue will be addressed and the analysis will be contin-
ued in the next section.

�ii� If g�−
72b0�1+��l

B+b0�1+B�� , the monotonic neutral curve is con-

tinuous and its minimal value is attained outside the region
k=O���.

2. Oscillatory instability

Assuming �0= i�0, where �0 is real in Eq. �29� and sepa-
rating out the real and imaginary parts, we obtain at leading
order the expressions for both oscillatory instability thresh-
old and the corresponding squared frequency

Mosc =
4�b0 + B + b0B��g + 3l + K2�

4B� + b0�6 + �4 + B���
, �36�

�0
2 = −

��g + K2��B�g − 45l + K2� + b0�1 + B��g + K2� − 9b0l�B − 3�� + 216b0l2�1 + ��
36P24B� + b0�6 + �4 + B����

. �37�

3. Competition of monotonic and oscillatory modes of instability

We now address the question of what type of instability
sets in first in various regions of parameters B, b0 and �. We
find that Eq. �36� changes its sign at

� = �osc = −
6b0

4B + b0�4 + B�
, �38�

while 1+�osc changes its sign at

b0
�osc� =

− 4B

B − 2
. �39�

Introducing a new variable being an associated squared wave
number g̃=g+K2, we find that in the domain −1
�
0,
the expression for the monotonic instability curve �33� be-
comes discontinuous and changes its sign at the point

g̃0 = −
72b0l�1 + ��

�b0 + B + b0B��
. �40�

We also find that the intersection of the monotonic and os-
cillatory neutral curves takes place at the points

g̃1,2 =
9�b0�− 3 + B� + 5B�l� � 3�3l�Q

2�b0 + B + b0B��
, �41�

where

Q = �3�b0�− 3 + B� + 5B�2� − 32b0�b0 + B + b0B��1 + ��� .

�42�

Both expressions �41� are discontinuous at �=0. In addition,
if B�3 then g̃2��=−1�=0 for all b0; if B�3 then for b0


b0
*, g̃2��=−1�=0 and for b0�b0

*, g̃1��=−1�=0, where

b0
* = −

5B

B − 3
. �43�

The expression �42� vanishes at

� = 0 and �44�

� = �* =
32b0�b0 + B + b0B�

− 5b0
2 − 2b0�61 + 25b0�B + 3�5 + b0�2B2 . �44�

The last expression �* changes its sign through infinity at

b0
�1� =

B�61 − 15B − 8�64 + 30B�
− 5 + B�− 50 + 3B�

. �45�

It should be noted that b0
�1��0 for B
16.7661, i.e., for all

realistic values of the Biot number at the gas-liquid interface.
The value �* merges with �osc at the point

b0
�0� =

17B

7 − 5B
. �46�
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Our analysis shows that there exist five regions of param-
eter B, as shown in Fig. 2, where depending on values of B,
b, and �, the competition between monotonic and oscillatory
modes of instability takes place according to one of the eight
possible scenarios presented in Fig. 3. In regions I and II,
�*
�osc
−1 and for ���osc, the marginal curve is as in
�f�-lower curve; for �osc
��−1, the marginal curve is as in
�g�; for −1
�
0, the marginal curve is as in �e�; for �
�0, the marginal curve is as in �f�-upper curve. In regions
III and IV, �*
−1
�osc
0 and for ���*, the marginal
curve is as in �f�-lower curve; for �*
�
−1, the marginal
curve is as in �f�-lower curve in III and �a−� in IV; for �=
−1, the marginal curve is as in �b�; for −1
�
�osc, the
marginal curve is as in �c�; for �=�osc, the marginal curve is
as in �d�; for �osc
�
0, the marginal curve is as in �e�; for

b
(0)

0
b
(osc)

0
b
(*)

0

b
(1)

0

(I) (II) (III) (IV) (V)

16.76611.4 2 3

B

FIG. 2. Five regions of parameter B, where depending on the
values of B, b, and � the competition between long-wave mono-
tonic and oscillatory modes of instability takes place following one
of the eight types of scenarios, as shown in Figs. 3�a�–3�g�.

FIG. 3. Typical shapes of the neutral curves in the case of the long-wave instability for k=O��� shown in the g̃-M plane.
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��0, the marginal curve is as in �f�-upper curve. In region
V, −1
�osc
0
�* and for �
−1, the marginal curve is as
in �a−�; for �=−1, the marginal curve is as in �b�; for −1

�
�osc, the marginal curve is as in �c�; for �=�osc, the
marginal curve is as in �d�; for �osc
�
0, the marginal
curve is as in �e�; for 0����*, the marginal curve is as in
�f�-upper curve; for ���*, the marginal curve is as in �a+�.

In conclusion to this subsection, we compare between the
present results and those of our previous investigations
�14,15�. Observing the expressions derived for the thresholds
of monotonic, Eq. �33�, and oscillatory, Eq. �36�, instabili-
ties, which contain both Biot numbers and the Lewis number,
one can see that both thermocapillarity and solutocapillarity
are equally important for the development of instability. This
circumstance is clear from the structure of the eigenfunc-
tions: the disturbances T0 and C0 are of the same order of
magnitude, see Eq. �26a�. In contrast with this, for a system
with poorly conducting boundaries, the contribution of ther-
mocapillarity, as compared to that of solutocapillarity, to the
interfacial shear stress rapidly decreases with a decrease of
the wave number of the disturbance when k=O�B1/2� �14�.
Therefore, the instability threshold is presented in terms of
the solutal Marangoni number and is independent of the Biot
number. One more essential difference of the present re-
search from our paper �14� is a treatment of the case of small
Lewis and Galileo numbers. In Ref. �14�, we considered the
limit when Lewis and Galileo numbers are small, but much
larger than the disturbance wave number for the system with
poorly conducting boundaries in the long-wave domain k
=O�B1/2�. At leading order we obtain that the marginal
monotonic curve is in the range O�L�, while the oscillatory
curves are in the domain O�1�. Therefore, the oscillatory
instability can be more dangerous only when the critical Ma-
rangoni number for the oscillatory instability differs in sign
with that of the critical value of the Marangoni number for
the monotonic instability. In the present paper, in the limit of
L ,G=O��2��k=O���, our results show that both oscillatory
and monotonic instability curves lie in the similar asymptotic
domains and depending on the values of the Biot and Soret
numbers, either of the two types of instability can set in.

A qualitative clear-cut distinction between the results ob-
tained here and those of the linear long-wave stability theory
in the limit of both asymptotically small Lewis and Galileo
numbers �15�, has to be made now. In the present case of the
long-wave instability for both finite Biot numbers, a variety
of different scenarios presented in Fig. 3 emerges. However,
in the case of a low-conductivity solid substrate �15�, the
minimum of the oscillatory neutral curve is always located at
K=0, as shown in Fig. 3�b�, i.e., only one specific case �b�
materializes.

B. The case k=O„1…

As shown above, the analysis carried out with k=O��� is
not sufficient for finding the minimum of the monotonic neu-
tral curve in the case when −1
�
0. Therefore, it is nec-
essary to analyze the case k��. First, consider the mono-
tonic instability under assumption k=O�1�. We obtain the
following problem for the perturbation functions:

ikũ + w̃z = 0, �47a�

− ikp̃ − k2ũ + ũzz = 0, �47b�

− p̃z − k2w̃ + w̃zz = 0, �47c�

− w̃ = − k2T̃ + T̃zz, �47d�

L−1�w̃ = − k2C̃ + C̃zz + ��− k2T̃ + T̃zz� , �47e�

at z=0

ũ = w̃ = 0, T̃z = b�k2�T̃, C̃z = − �T̃z, �47f�

at z=1

T̃z + B�T̃ − �̃� = 0, �47g�

C̃z − �B�T̃ − �̃� = 0, �47h�

w̃ = 0, �47i�

G�̃ − p̃ − 2ikũ = − k2�̃ , �47j�

ũz + ikw̃ = ikM�C̃ − T̃ + �̃�� + 1�� , �47k�

where b�k2� is given by Eq. �21�.
Following scaling for the parameters and the variables of

the problem is applied:

L = �2l, G = �2g, M = �2�M0 + �2M2 + ¯ � , �48�

��̃,T̃,C̃, p̃, ũ,w̃� = ��0,T0,C0,p0,u0,w0�

+ �2��2,T2,C2,p2,u2,w2� + ¯ . �49�

It should be noted that at the leading order, the thermal dis-
turbance T0 vanishes, whereas the solutal disturbance C0
does not. Using �49� we obtain at leading order for the
threshold of the monotonic instability in the domain k
=O�1�

M0 =
16k2l�k − cosh�k�sinh�k��

2k��2 + k2 − k coth�k�� − � sinh�2k�
. �50�

This result can be presented in terms of the solutal Ma-
rangoni number Ms�M�L−1, and it is independent of the
Biot numbers. That is because in the region of finite wave
numbers the convection is caused solely by the solutocapil-
lary effect.

The analysis of Eq. �50� shows that the minimal value is
attained at k=0 and there are no additional minima of the
neutral curve in the region of finite wave numbers k=O�1�.
Hence, in the case −1
�
0, the minimum is located in the
region ��k�1.

C. Intermediate asymptotics of the long-wave monotonic
instability for k=O„

��…

In order to match the results obtained in the regions k
=O��� and k=O�1�, it is necessary to consider the interme-
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diate region of wave numbers. To determine the characteris-
tic scale of the matching region, we first analyze the asymp-
totics of the obtained fragments of the neutral curve.

It is easy to see that the threshold of the monotonic insta-
bility in the long-wave region k=�K, Eq. �33�, can be rewrit-
ten in the form

M0 = M̃

1 +
g


K−2

1 + �K−2 , �51�

where

M̃ =
48l

�
, � =

Bg� + �1 + B�g�b0 + 72l�1 + ��b0

��B + �1 + B�b0�
.

�52�

In the limit of large wave numbers K we obtain at leading
order

M0 = M̃�1 + 	 g


− �
K−2� + O�K−4�

=
48l

�
−

3456l2�1 + ��b0

K2�2�B + b0 + Bb0�
+ O�K−4� . �53�

Hence, taking into account our scaling in this limit �k=�K,
L=�2l�, one obtains

M = �2�M0 + O��2�� =
48L

�
−

3456L2�1 + ��b0

k2�2�B + b0 + Bb0�
+ O��4� .

�54�

Thus, investigating the asymptotic behavior of Eq. �51� in
the limit of large wave numbers K, results in the following
cases.

�1� �� g
�0: In this case the neutral curve is monotoni-

cally increasing, as shown in Fig. 4 �upper panel�.
�2� 0
�
 g

 : In this case the neutral curve has a mini-
mum in the region of large K, as shown in Fig. 4 �middle
panel�.

�3� �
0: In this case, as in the previous one, the neutral
curve has a minimum in the region of large K, as shown in
Fig. 4 �lower panel�.

Investigating the asymptotic behavior of the threshold of
the monotonic instability in the region of finite wave num-
bers �50�, in the limit of small k at leading order, we obtain

M = �2�M0 + O��2�� =
48L

�
+

16k2L

5�
+ O�k3� . �55�

We can expect that matching the expressions given by
Eqs. �54� and �55� can be achieved when

L2/k2 � k2L, i.e., k = O�L1/4� = O��1/2� .

The corresponding intermediate region of k has to be consid-
ered in more detail.

Based on the arguments presented above, we choose the
following scaling for the parameters of the problem in the
linear system for perturbation functions �19a�–�19e� with
boundary conditions �19h�–�19m� and �20�

k = ��K, L = �2l, G = �2g , �56a�

M = �2�M0 + �M1 + ¯ � , �56b�

b = b0 + �b1 + ¯ , �56c�
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M=1, α=0.5, g=2, Σ=10

M
0
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~
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(a)

(b)

(c)

FIG. 4. Asymptotic behavior of the critical Marangoni number
for the long-wave monotonic instability given by Eq. �51� in the
limit of large wave numbers K for �upper panel� �� g

�0, where

M̃ and � are given by Eq. �52�. M̃ =1, �=0.5, g=2, and =10,

�Middle panel� 0
�
 g
 , M̃ =1, �=0.1, g=2, and =10. �Lower

panel� �
0, M̃ =1, �=−0.1, g=2, and =10.
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ũ = ���u0 + �u1 + ¯ �, w̃ = ��w0 + �w1 + ¯ � ,

�56d�

��̃,T̃,C̃, p̃� = ��0,T0,C0,p0� + ���1,T1,C1,p1� + ¯ .

�56e�

Solving the obtained set of equations along with the
boundary conditions at each order, we find that at zero order,
the solution is given by

u0 = w0 = 0, p0 = 0, T0 = 0, �0 = 0, C0 =
K2��1

72l
.

�57a�

At first order the solution of the problem is

u1 = w1 = 0, p1 = 0, T1 =
B�1 + zb0��1

B + �1 + B�b0
, �57b�

C1 =
1

2160l�B + �1 + B�b0�
„�ˆ†B„30g − 2160l

+ K41 + 3z2�5 + 2z2�− 5 + 3z���… + „30�1 + B�g

− 2160Blz + �1 + B�K41 + 3z2�5 + 2z2�− 5

+ 3z���…b0‡�1 + 30K2�B + �1 + B�b0��2‰… . �57c�

Taking into account the solutions obtained above, at second
order the problem becomes

iKu2 + w2,z = 0, �58a�

− iKp2 + u2,zz = 0, �58b�

− p2,z = 0, �58c�

− K2T1 + T2,zz = 0, �58d�

l−1�w3 = − K2C1 + C2,zz − �K2T1 + �T2,zz, �58e�

z = 0:u2 = w2 = 0, T2 = b1T1 + b0T2, C2,z + �T2,z = 0,

�58f�

z = 1:T2,z + B�T2 − �2� = 0, C2,z − �B�T2 − �2� = 0,

�58g�

w2 = 0, p2 = K2�1, u2,z = iKM0C0. �58h�

Solving Eqs. �58a�–�58e� along with Eqs. �58f�–�58h� yields

u2 =
i

6
K3z�− 2 + 3z��1, �59a�

w2 =
1

6
K4�− 1 + z�z2�1, �59b�

p2 = K2�1, �59c�

T2 =
1

6�B + �1 + B�b0�2„Bˆ†K
2
„− 6 + 3B�− 1 + z2�

+ b03�− 1 + �− 2 + z�z� + B�− 1 + z��1 + z�4 + z��

+ z�− 3 + z2 + B�− 1 + z2��b0�… + 6�− 1 + B�− 1

+ z��b1‡�1 + 6�B + �1 + B�b0��1 + zb0��2‰… . �59d�

Also, at this order of approximation we finally derive the
value for the threshold of the monotonic instability in the
long-wave domain k=O����

M0 =
48l

�
. �60�

At third order we obtain the problem

iKu3 + w3,z = 0, �61a�

− iKp3 − K2u2 + u3,zz = 0, �61b�

− p3,z + w2,zz = 0, �61c�

− K2T2 + T3,zz = − w2, �61d�

l−1�w4 = − K2C2 + C3,zz − �K2T2 + �T3,zz, �61e�

z = 0:u3 = w3 = 0, T3 = b0T3 + b1T2 + b2T1,

C3,z + �T3,z = 0, �61f�

z = 1:T3,z + B�T3 − �3� = 0, C3,z − �B�T3 − �3� = 0,w3 = 0,

�61g�

g�1 − p3 − 2iKu2 = − K2�2, �61h�

u3,z + iKw2 = iKM0�C1 − T1 + �1�� + 1�� + iKM1C0.

�61i�

Solving Eqs. �61a�–�61i� results in

u3 =
iKz

180
†„30g�3z − 2� + K4− 6 + 5z�3 + z�3z − 4���…�1

+ 30K2�3z − 2��2‡ , �62a�

w3 =
K2

180
†�z − 1�z2

„30g + K4�3 + z�3z − 2����1

+ 30K2�2…‡ , �62b�

p3 =
1

6
„6g + K4�1 + z�3z − 2����1 + K2�2… . �62c�

Using the boundary condition �61i�, for the first-order cor-
rection to the long-wave monotonic instability threshold in
the limit k=O����, we obtain
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M1 =
16lBK4� + ��1 + B�K4� − 1080l�1 + ���b0�

5K2�2�B + �1 + B�b0�
.

�63�

It it readily seen that Eq. �63� can be recast in the form

M1 =
16K2l

5�
−

3456l2�1 + ��b0

K2�2�B + b0 + Bb0�
, �64�

and the full monotonic neutral curve is represented by

M = �2�M0 + �M1 + ¯ �

=
48L

�
+

16k2L

5�
−

3456L2�1 + ��b0

k2�2�B + b0 + Bb0�
, �65�

where L=�2l, k=��K.
Thus, when the wave number k is sufficiently small, the

second term of Eq. �65� can be omitted and the result repro-
duces the long-wave instability threshold �54�. In the same
way, for sufficiently large values of the wave numbers, at
leading order the third term of Eq. �65� is negligible and the
two first terms are dominant. Therefore, we obtain matching
with the limit of finite k, Eq. �55�.

Seeking for the minimum of the full monotonic neutral
curve Eq. �65� in the intermediate domain k=O����, we find
that its behavior is determined by the value of the Soret
number � and the following cases are relevant:

�1� For −1
�
0, the monotonic neutral curve �65� has a
minimum at

k* = � − 1080L�1 + ��b0

��B + �1 + B�b0��1/4

, �66�

as shown in Fig. 5.
�2� For �
−1 or ��0, the neutral curve �65� is mono-

tonic for all k, as shown in Fig. 6, and the monotonic neutral
curve attains its minimal value at k=0.

D. Experimental observability of the results

The results of the linear stability analysis given earlier in
this section can be expressed in terms of possible experi-
ments with a binary mixture of water-ethanol whose relevant
thermophysical properties, such as the Soret diffusion param-
eter ST and the gradients of surface tension with respect to
both temperature and solute concentration are documented in
the literature �19,20� and summarized in Table II.

TABLE II. Material properties for the water-ethanol mixture.

Case I −cwt=0.2 Case II −cwt=0.3

cmol=0.1 cmol=0.17

�t=1.5�10−4 N m−1 K−1, �t=1.5�10−4 N m−1 K−1

�c=−0.1 N m−1�mole% �−1. Ref. �20� �c=−0.03 N m−1�mole% �−1. Ref. �20�
ST=0.003 K−1, Ref. �19� ST=−0.001 K−1, Ref. �19�
�=−0.41 �=0.06
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FIG. 5. The full monotonic neutral curve given by Eq. �65� in
the intermediate domain k=O���� for −1
�
0. This neutral
curve �65� attains a minimum of the absolute value of M at the
wave number determined by Eq. �66�. The parameter values are L
=0.0001, B=1, b0=1, =2, and �=−0.1.
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FIG. 6. The full monotonic neutral curve given by Eq. �65� in
the intermediate domain k=O���� for �
−1 or ��0. This neutral
curve is monotonic for all k and the monotonic instability sets in at
k=0. The parameter values are L=0.0001, B=1, b0=1, =2, and
�=0.1.
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The mixture water-ethanol is chosen here with the ethanol
weight concentration cwt of 0.2 and 0.3 denoted as case I and
II, respectively. In these cases, the Soret diffusion coefficient
�=ST /cwt are of different sign �19�. Based on the molecular
weights of ethanol and water 46 and 18, respectively, the
mole fraction of ethanol is given by

cmol =
9cwt

23�1 − cwt�
. �67�

The values of �t and �c are evaluated from the data pre-
sented in Ref. �20�. The Lewis number of the mixture is
estimated as L=9.0�10−3. The heat transfer rate at the
liquid-gas interface used in the computation is q
=10 W/ �m2 K�. It is stressed that the value of the Biot num-
ber B was assumed here to be order one, i.e., not scaled with
respect to �, therefore our results are expected to be valid for
all finite values of B�0. The actual value of B is small,
O�10−3� for the range of the layer thicknesses considered
below.

The assumption of small Galileo numbers is valid for thin
layers in low gravity. The thresholds of monotonic and os-
cillatory instabilities are calculated below using Eqs. �34�
and �36�, respectively, in terms of original, prior to scaling
with �2, values of the Marangoni number as function of G, L
and the rest of parameters.

In case I, for b0=1, h0=3.0�10−5 m and gravity of
0.01g0, where g0 is the terrestrial gravity acceleration, the
value of the Galileo number is G=2.0�10−2 and the insta-
bility is monotonic, M0=0.024
Mosc=0.11. The threshold
of instability corresponds to the temperature gradient of a
=0.2 K/cm. In the limit of b0=0 discussed in Ref. �15� the
instability would be oscillatory if heating is applied at the
gas side with �Mosc�=0.31
 �M0�=1.05 corresponding to a
=−3.3 K/cm, provided that the lateral extent of the system is
at least 70 times larger that the film thickness. The limitation
for the lateral size of the system comes from the requirement
that the value of �0

2 given by Eq. �37� be positive which
implies a condition for the critical value for the wave number
K.

In case II, with b0=1, h0=7.0�10−5 m and gravity of
g=10−3g0, we find that the instability is monotonic with
the threshold M0=0.016
Mosc=0.023 that corresponds
to a=0.03 K/cm. Furthermore, increasing the film to
9.0�10−5 m with the rest of parameters fixed, leads to
the change of the instability type from monotonic to oscilla-
tory, Mosc=0.023
M0=0.035 that materializes at a
=0.025 K/cm. In the limit of b0=0 discussed in Ref. �15� in
both of the cases the instability would be oscillatory with
Mosc=0.6
M0=7.05 corresponding to a=1.1 K/cm pro-
vided that the lateral extent of the system is at least 70 times
larger that the film thickness.

IV. DERIVATION OF THE LONG-WAVE NONLINEAR
EVOLUTION EQUATIONS

A set of three-dimensional governing equations with the
corresponding boundary conditions in dimensionless form
are given in Eqs. �14�–�16�. The perturbation functions

�u ,v ,w ,T ,C� in the vicinity of the base state �18� satisfy the
equations

ux + vy + wz = 0, �68a�

ut + P−1�uux + vuy + wuz� = − px + uxx + uyy + uzz,

�68b�

vt + P−1�uvx + vvy + wvz� = − px + vxx + vyy + vzz,

�68c�

wt + P−1�uwx + vwy + wwz� = − pz + wxx + wyy + wzz,

�68d�

PTt + uTx + vTy − w + wTz = Txx + Tyy + Tzz, �68e�

L−1�PCt + uCx + vCy + �w + wCz�

= Cxx + Cyy + Czz + ��Txx + Tyy + Tzz� �68f�

and the boundary conditions

z = 0:u = v = w = 0, Tz = bT, Cz + �Tz = 0, �69a�

z = h�x,y,t�:− hxTx − hyTy + Tz + B�T − h + 1��1 + hx
2 + hy

2 = 0,

�69b�

− hxCx − hyCy + Cz − �B�T − h + 1��1 + hx
2 + hy

2 = 0,

�69c�

Pht + uhx + vhy = w , �69d�

2�wz − ux�hx − �uy + vx�hy − hyhx�vz + wy� + �uz + wx��1 − hx
2�

= M�Cx − Tx + hx�� + 1 + Cz − Tz���1 + hx
2 + hy

2, �69e�

2�wz − vy�hy − �uy + vx�hx − hyhx�uz + wx� + �vz + wy��1 − hy
2�

= M�Cy − Ty + hy�� + 1 + Cz − Tz���1 + hx
2 + hy

2, �69f�

�− p + G�h − 1���1 + hx
2 + hy

2� + 2�ux�hx
2 − 1� + vy�hy

2 − 1�

+ �uy + vx�hxhy − �wy + vz�hy − hx�uz + wx��

= 
hxx�1 + hy

2� + hyy�1 + hx
2� − 2hxhyhxy

�1 + hx
2 + hy

2�3/2 . �69g�

The kinematic boundary condition �69d� is rewritten in
the conservative form

Pht = −
�

�x��0

h

u�x,y,z,t�dz� −
�

�y��0

h

v�x,y,z,t�dz� .

�70�

Integrating Eq. �68f� across the liquid layer, taking into
consideration the boundary conditions �69a�–�69d� and intro-
ducing the total solute concentration
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� = �
0

h

�C + �z�dz �71�

as a new variable, leads to the second nonlinear evolution
equation in the conservative form

P�t +
�

�x
�

0

h

�u�C + �z��dz +
�

�y
�

0

h

�v�C + �z��dz

− L
�

�x
�

0

h

�Cx + �Tx�dz − L
�

�y
�

0

h

�Cy + �Ty�dz = 0.

�72�

Based on the results of Sec. III, we consider the long-
wave Marangoni instability of the system scaling the space
and time variables as

� = �x, � = �y, � = �4t . �73�

The problem parameters such as the Lewis, Galileo, Biot,
and capillary numbers are scaled as

L = �2l, G = �2g, B = O�1�, b = b0 + �2b2 + ¯ ,

 = O�1� , �74�

where

b2 = −
�̃h̃

3
	 �2

��2 +
�2

��2
 . �75�

In accordance with the results of the linear theory, the emer-
gence of instability is expected for M =O��2�. We thus define

M = �2m . �76�

The independent variables of the problem are expanded
into series of � as

u = ��u0 + �2u2 + ¯ �, v = ��v0 + �2v2 + ¯ � ,

w = �2�w0 + �2w2 + ¯ � , �77a�

�T,C,p� = �T0,C0,p0� + �2�T2,C2,p2� + ¯ , �77b�

h�x,y,t� = 1 + �0�x,y,t� + �2�2�x,y,t�

= h0�x,y,t� + �2h2�x,y,t� + ¯ . �77c�

Equations �76� and �77� are substituted into Eqs.
�68�–�70� and �72� and a hierarchy of problems at orders
�0 ,�2 , . . ., is obtained and solved.

At leading order with respect to �, Eqs. �68� and �69� are
solved and the solution reads

u0 = v0 = w0 = 0, p0 = 0, �78a�

T0 =
B�1 + zb0��h0��,�,�� − 1�

B + b0�1 + Bh0��,�,���
, �78b�

C0 = A��,�,�� −
Bz�b0�h0��,�,�� − 1�

B + b0�1 + Bh0��,�,���
, �78c�

where A�� ,� ,�� is an unknown function.

Solution of Eqs. �68� is carried out up to second order and
its results are subsequently substituted into the leading order
of Eqs. �70� and �72� to derive the set of long-wave nonlinear
evolution equations that govern the spatiotemporal dynamics
of a thin binary-liquid film

Ph� = �� � · Q� 1, P�� = �� � · Q� 2, �79�

where

�� � = i�
�

��
+ j�

�

��
, �80�

Q� 1 =
1

3
gh0

3�� �h0

−
m„2h�1

2�� �� − 2��1
2 − �2�B� + �2 + ��b0�h0

2��� �h0…

4�1
2

−
1

3
h0

3�� ��� �
2 h0, �81�

Q� 2 =
1

24h0�1
3†m���2h2 + 6��1�„2h0�1

2�� ��

+ �2�B� + �2 + ��b0�h0
2 − 2��1

2��� �h0…‡

−
gh0

2���2h0
2 + 8��1��� �h0

24�1

+
h0

2�2��h0
2 + 8���� ��� �

2 h0

24�1
−

1

2h0�1
2„l2h0�� ��

− �2��1
2 − ��B − b0��2�h0

2�… �82�

and

�1 = B + b0�1 + Bh0�, �2 = B + b0�1 + B� . �83�

It should be noted here that for b0=0 which corresponds to
the case of low conductivity of the solid substrate, the results
presented here reproduce those of Ref. �15�.

We now discuss the region of validity of Eqs. �79�. To
achieve this goal, they are linearized in the vicinity of the
base state given by the mean values of both the film depth
and solute concentration

h��,�,�� = 1 + H��,�,��, ���,�,�� =
�

2
+ c��,�,��

�84�

with H�� ,� ,��, c�� ,� ,���1, resulting in

PH� = �� � · Q� 1
�l�, Pc� = �� � · Q� 2

�l�, �85�

where

Q� 1
�l� = −

1

12
�− 4g�� �H + 3m�2�� �c −

1

�2
�B� − 2�b0�� �H�

+ 4�� ��� �
2 H� , �86�
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Q� 2
�l� =

1

24
� 1

�2
„�5Bg + b0�5�1 + B�g − 12�2 + B�l + 4�B�

− 2�m���� �H… + 8�3l − �m��� �c − 5��� ��� �
2 H� .

�87�

Introducing normal perturbations

H��,�,�� =�eiK� ·r�+��, c��,�� = �eiK� ·r�+��, �88�

where r� = �� ,��, yields the following set of equations for the
amplitudes of the perturbation functions:

1

12
�4�gK2 + K4 + 3P�� +

3K2m

�2
�B� − 2�b0�� −

1

2
K2m�

= 0, �89a�

K2�

24�2
5B�g + K2� + �5�1 + B�g − 12�2 + B�l + 5�1 + B�K2

+ 4m�B� − 2��b0�� + �K2l + P� −
1

3
K2�m�� = 0.

�89b�

Thus, the solvability condition for Eqs. �89� coincides
with the dispersion relation given by Eq. �29�. The analysis
reproduces the results obtained in the previous sections in the
framework of the long-wave linear stability theory, Eqs. �33�,
�36�, and �37�. Based on Eqs. �32�, we conclude that the set
of Eqs. �79� is well posed for m�
48l and ill posed for
m��48l. Hence, the set of nonlinear evolution equations
�79�–�83� shall be used for the domain m�
48l. Numerical
solution of Eqs. �79�–�83� is outside the scope of this paper
and its results will be reported elsewhere. Equations
�79�–�83� cannot be used to investigate the domain of m�
�48l, and therefore a different evolution equation must be
derived for that. This task is pursued next.

V. NONLINEAR EVOLUTION OF MONOTONIC
INSTABILITY FOR m��48l

We use the scaling based on the results of the linear
theory in the domain of k=O�1� for Eqs. �68� and �69�

L = �2l, G = �2g, M = �2m, B = O�1�, b = O�1� ,

 = O�1� , �90a�

C = Ĉ + �2Ĉ2, �T,u,v,w,p� = �2�T̂, û, v̂,ŵ, p̂� , �90b�

h = 1 + �2�̂,
�

�x
,

�

�y
,

�

�z
= O�1�,

�

�t
= O��2� . �90c�

At leading order, we obtain a set of equations with boundary
conditions

ûx + v̂y + ŵz = 0, �91a�

− p̂x + ûxx + ûyy + ûzz = 0, �91b�

− p̂y + v̂xx + v̂yy + v̂zz = 0, �91c�

− p̂z + ŵxx + ŵyy + ŵzz = 0, �91d�

T̂xx + T̂yy + T̂zz + w = 0, �91e�

l−1�PĈt + ûĈx + v̂Ĉy + �ŵ + ŵĈz� = Ĉxx + Ĉyy + Ĉzz,

�91f�

z = 0:û = v̂ = ŵ = 0, T̂z = bT̂, Ĉz = 0, �92a�

z = 1:T̂z + B�T̂ − �� = 0, �92b�

Ĉz = 0, w = 0, �92c�

ûz + ŵx = mĈx, �92d�

v̂z + ŵy = mĈy , �92e�

− p̂ − 2�ûx + v̂y� = ��̂xx + �̂yy� . �92f�

Equation �91f� can be recast into the conservative form by
integrating it across the layer and using the boundary condi-

tions �92a� and �92c� for the functions ŵ and Ĉ

P
�

�t��0

1

�Ĉ + �z�dz� + �� · �
0

1

�v̂��Ĉ + �z� − l�� Ĉ�dz = 0.

�93�

To investigate the weakly nonlinear evolution of the long-
wave monotonic instability in the domain �L�k�1, we em-
ploy the scaling

k = O���� 1, m = m0 + �2m2 + ¯ , �94a�

Ĉ = C0 + �2C2 + ¯ , T̂ = �−2�T0 + �2T2� , �94b�

�û, v̂� = ��u1,v1� + �3�u3,v3� + ¯ , ŵ = �2w2 + �4w4 + ¯ ,

�94c�

p̂ = p0 + �2p2 + ¯ , �̂ = �−2��0 + �2�2 + ¯ � , �94d�

�

�x
= �

�

��
,

�

�y
= �

�

��
,

�

�t
= �2 �

�t2
+ �4 �

�t4
. �94e�

It is important to emphasize here that in spite of appar-
ently large values for the disturbances T and � in Eqs. �94�
due to the factor �−2, it follows from scalings �90� and �94�
that in the relevant domain of �L=O����k=O����1, both
T and � are in fact scaled with �� /��2�1. Therefore they are
asymptotically small, as expected.

At zero order Eq. �93� becomes
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P
�

�t2
��

0

1

�C0 + �z�dz� +
�

��
�

0

1

�u1�C0 + �z��dz

+
�

��
�

0

1

�v1�C0 + �z��dz − l
�

��
�

0

1

C0,�dz

− l
�

��
�

0

1

C0,�dz = 0, �95�

where

u1 =
1

6
z�− 2 + 3z�p0,���,�,t2,t4� ,

v1 =
1

6
z�− 2 + 3z�p0,���,�,t2,t4� , �96a�

p0��,�,t2,t4� = − ��0,�� + �0,��� ,

C0��,�,t2,t4� =
2p0��,�,t2,t4�

3m0
. �96b�

Hence, after simplifications, Eq. �95� takes the following
form:

��0

�t2
=

1

48P
�48l − �m0��� 2�0. �97�

Thus, at the instability threshold m0= 48l
� , the growth rate

of the interfacial deformation in time t2 is zero, i.e.,
��0

�t2
=0.

At the next order of approximation, Eq. �93� yields

P
�

�t2
��

0

1

C2dz� + P
�

�t4
��

0

1

�C0 + �z�dz� +
�

��
�

0

1

�u1C2

+ u3�C0 + �z��dz +
�

��
�

0

1

�v1C2 + v3�C0 + �z��dz

− l
�

��
�

0

1

C2,�dz − l
�

��
�

0

1

C2,�dz = 0, �98�

where

C2�z,�,�,t2,t4� =  ��,�,t2,t4� +
�

l2 ��� p0�2� z4

1728
−

z3

1296
�

+
�

l
�2p0� z4

72
−

z2

144
−

z5

120
� , �99a�

u3 = z�48l

�
 � +

�m2

72l
p0,� −!2,� +

1

10
�2p0,� −

1

54l
�p0,�p0,��

+ p0,�p0,���� +
z2

12
6!2,� − �2p0,�� + �2p0,�� z3

9
−

z4

12
� ,

�99b�

v3 = z�48l

�
 � +

�m2

72l
p0,� −!2,� +

1

10
�2p0,� −

1

54l
�p0,�p0,��

+ p0,�p0,���� +
z2

12
6!2,� − �2p0,�� + �2p0,�� z3

9
−

z4

12
� ,

�99c�

!2��,�,t2,t4� = − �2�2��,�,t2,t4� , �99d�

 ��,�,t2,t4� =
�

72l
!2��,�,t2,t4� +"��,�,t2,t4� , �99e�

"��,�,t2,t4� = −
�2m2

3456l2 p0 −
�

720l
�2p0 +

�

5184l2 ��� p0�2.

�99f�

Using Eqs. �99� the evolution equation �98� is rewritten in
the form

P
�C0

�t4
= −

�m2

48
�2C0 −

l

15
�4C0 +

48l

35�2�� ��� C0 · ��� C0�2�

+
l

10�
�� ��� C0 · �2C0� +

3l

5�
�2���� C0�2� . �100�

In the two-dimensional case all these expressions are signifi-
cantly simplified. We finally obtain the evolution equation
describing the long-wave nonlinear evolution of the mono-
tonic instability in the two-dimensional case

P
�#

�t4
+

�2

��2��m2

48
# −

48l

35�2#
3 −

13l

10�
##� +

l

15
#��� = 0,

�101�

where

# =
�C0

��
, C0 = −

2

3m0
�0,��, m0 =

48l

�
. �102�

Equation �101� is similar to the equation derived and studied
in the context of the Bénard-Marangoni convection in pure
liquids �18�.

VI. SUMMARY

Linear and nonlinear stability analysis of the long-wave
Marangoni instability of a system that consists of a layer of
an incompressible binary liquid with a deformable free sur-
face laying on a solid layer of a finite thickness subjected to
differential heating across it is considered in the presence of
the Soret effect in the case of a finite Biot number at the
liquid-gas interface. The case of a physically relevant limit of
a small Lewis number under microgravity conditions is con-
sidered here. As shown in our previous paper �15�, in this
limit both long-wave monotonic and oscillatory modes of
instability emerge in the case of low conductivity of the solid
substrate. In the present work we consider the case of finite
conductivity of the solid substrate and as such, it allows one
to bridge between various thermal boundary conditions at the

PODOLNY, NEPOMNYASHCHY, AND ORON PHYSICAL REVIEW E 76, 026309 �2007�

026309-16



solid-liquid boundary considered in the literature �9,12–14�
for layers of binary liquid.

The long-wave Marangoni instability is investigated in
the framework of linear stability theory in the limit of as-
ymptotically small Lewis and Galileo numbers L ,G=O��2�
in the domain of wave numbers k=O���. Both long-wave
monotonic and oscillatory modes of instability are found in
the case of a finite Biot number at the gas-liquid interface
and a finite conductivity of the solid substrate. Our analysis
reveals a competition between different modes of instability
in various parameter domains of Biot and Soret numbers.

Linear stability analysis in the domain of finite wave
numbers k=O�1� in the case of asymptotically small Lewis
and Galileo numbers reveals that there are no additional
minima of the monotonic neutral curve in the domain of k
=O�1�.

Study of the asymptotic behaviors of the long-wave
monotonic neutral curve obtained in the region k=O��� in
the limit of large wave numbers and also of the monotonic
neutral curve obtained in the case of finite wave numbers k
=O�1� in the limit when k→0, we reveal a long-wave inter-
mediate asymptotic limit k=O�L1/4�=O����, where depend-
ing on the parameter values the minimum of the full mono-
tonic neutral curve can be present.

A set of long-wave nonlinear evolution equations that
governs the spatiotemporal dynamics of a thin binary-liquid
film is derived in the domain of k=O���. Our analysis shows
that the set of equations is well-posed when the Marangoni
number is below the monotonic instability threshold, i.e.,
M
48L /�.

A weakly nonlinear evolution equation describing the dy-
namics of the long-wave monotonic instability is derived in
the domain of wave numbers �L�k�1. The form of the
obtained nonlinear evolution equation is very similar to that
obtained for the surface-tension driven convection in a hori-
zontal liquid layer confined between poorly conducting
boundaries �18�.
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